Công thức Euler-Maclaurin

Công thức Euler-Maclaurin

f(0) + f(1) + f(2) + \cdots = \displaystyle{\int\limits_0^\infty\!dx\, f(x)} + \frac12 f(0) - \frac{f'(0)}{12} + \frac{f'''(0)}{720} + \cdots

rất hay được sử dụng trong vật lý, ví dụ trong bài toán về nghịch từ Landau, hay hiệu ứng Casimir. Hôm trước tôi có học mót được từ một người bạn cách chứng minh như sau.

Ta bắt đầu từ khai triển Taylor:

f (x+a) = f(x) + a \displaystyle{\frac{d f(x)}{d x}} + \frac{a^2}{2!} \frac{d^2 f(x)}{d x^2} + \frac{a^3}{3!} \frac{d^3 f(x)}{d x^3} + \cdots

Để cho tiện ta ký hiệu \mathrm{d}=d/dx. Ta có thể viết công thức trên như sau:

f (x+a) = \left(1+ a\mathrm{d}+ \displaystyle{\frac{(a\mathrm{d})^2}{2!}} +\cdots \right)f(x) = e^{a \mathrm{d}} f(x)

đo đó

f(0) + f(1) + f(2) + \cdots = (1+ e^{\mathrm{d}} + e^{2\mathrm{d}} + e^{3\mathrm{d}}+\cdots) f(x)|_{x=0}

Lấy tổng cấp số nhân trong ngoặc ta nhận được

f(0) + f(1) + f(2) + \cdots = \displaystyle{\frac1{1- e^{\mathrm{d}}}} f(x)|_{x=0}

Bây giờ ta lại khai triển hàm số (1-e^{\mathrm{d}})^{-1} thành chuỗi Taylor theo \mathrm{d}. Ta nhận được

\left(-\mathrm{d}^{-1}  + \displaystyle{\frac12} - \frac{\mathrm{d}}{12} + \frac{\mathrm{d}^3}{720} + \cdots\right) f(x)|_{x=0}

Bây giờ ta phải xác định \mathrm{d}^{-1} là gì. Nếu \mathrm{d} là đạo hàm thì tất nhiên \mathrm{d}^{-1} phải là tích phân. Giới hạn trên của tích phân thì theo công thức trên phải là 0, giới hạn dưới thì cứ lấy đại +\infty,

\mathrm{d}^{-1} = \displaystyle{\int\limits^0_{+\infty}\!dx}

Và như thế ta nhận được công thức Euler-MacLaurin ở trên.

Bài tập: tìm khai triển của

f\left(\displaystyle{\frac12}\right) + f\left(\displaystyle{\frac32}\right) + f\left(\displaystyle{\frac 52}\right) +\cdots - \displaystyle{\int\limits_0^\infty\!dx\, f(x)}

qua các đạo hàm của hàm số f(x) tại x=0.

Advertisement

One response to “Công thức Euler-Maclaurin

  1. Hồ Hữu Nhân

    Giáo sư vậy lý mà nói chuyện toán không à, có trong máu rồi Sơn nhỉ?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s