Trong bài này chúng ta sẽ làm quen với khái niệm mật độ tới hạn của vũ trụ và một một đại lượng khác thường được gọi đơn giản là . Giá trị của
là đại lượng quyết định số phận cuối cùng của vũ trụ, nên nó rất quan trọng. Để đọc bài này các bạn chỉ cần có kiến thức vật lý phổ thông.
Khi ta đứng trên mặt đất và tung một hòn đá lên, nó sẽ bay lên nhưng cuối cùng sẽ rơi xuống đất. Đó là do động năng của hòn đá không đủ để thắng thế năng của trọng trường của trái đất.
Bây giờ ta giả sử ta có thể giảm dần khối lượng của trái đất đi mà vẫn giữ kích thước của nó không thay đổi. Để làm như thế ta phải tưởng tượng mật độ của trái đất giảm dần đi. Lúc đó lực hấp dẫn của trái đất sẽ ngày càng yếu, vì lực hấp dẫn tỉ lệ thuận với khối lượng của vật thể. Đến một lúc nào đó hòn đá do ta tung lên sẽ vượt khỏi trọng trường để bay ra ngoài vũ trụ.
Trong vũ trụ học cũng có một hiện tượng như vậy. Qua quan sát ta biết vũ trụ đang giãn nở ra với tốc độ đặc trưng bằng hằng số Hubble (xem ở dưới). Với cùng một tốc độ giãn nở này, nếu vũ trụ có mật độ cao hơn một mật độ
nào đó thì đến một lúc nào đó nó sẽ không nở ra nữa mà bắt đầu co lại. Ngược lại, nếu
nhỏ thì vũ trụ sẽ giãn ra mãi.
được gọi là tới hạn là mật độ tới hạn.
Trong bài này ta sẽ tính mật độ tới hạn, giả sử hằng số Hubble là đã biết. Định luật Hubble, xin nhắc lại, là như sau: trong vũ trụ đang giãn nở, hai thiên hà cách nhau khoảng cách bằng
chạy ra xa nhau với vận tốc
tỉ lệ thuận với
. Hằng số tỷ lệ
trong công thức
được gọi là hằng số Hubble.
Ta tưởng tượng một mô hình vũ trụ rất đơn giản: ta giả sử vũ trụ là một quả cầu có mật độ vật chất là . Mô hình này không hoàn toàn đúng vì vũ trụ không có ranh rới, không có điểm nào có thể coi là tâm hình cầu. Tuy nhiên mô hình đơn giản này sẽ cho ta kết quả đúng.
Ta theo dõi một ngân hà cách tâm quả cầu một khoảng cách bằng . Gọi khối lượng của ngân hà này là
.
Ta lấy tâm hình cầu làm gốc toạ độ, và xét hệ quy chiếu mà tâm hình cầu đứng yên. Do sự giãn nở của vũ trụ, thiên hà chuyển động ra xa tâm hình cầu. Nếu ta ký hiệu vận tốc chuyển động của thiên hà là , thì động năng của nó là
.
Thế năng của ngân hà bằng , trong đó
là khối lượng vật chất bên trong quả cầu bán kính
:
.
Như vậy vũ trụ sẽ giãn nở mãi mãi nếu
hay
Nhưng chính là hằng số Hubble
. Bất đẳng thức trên có thể viết thành điều kiện để vũ trụ nở ra mãi mãi
trong đó
chính là mất độ tới hạn. Trong khi đó nếu vũ trụ sẽ co lại.
Tỷ số
quyết định số phận của vũ trụ (“Ta là và
…”). Nếu
thì vũ trụ sẽ kết thúc bằng một vụ nổ lớn ngược: mọi thiên hà trong vũ trụ lại vào một điểm, nhiệt độ càng ngày càng cao lên, tiến đến vô cùng. Nếu
thì tương lai của vũ trụ sáng sủa hơn một chút: các ngân hà càng ngày càng xa nhau ra, vũ trụ ngày càng loãng đi, nhưng không có gì đặc biệt xảy ra.
Để biết tương lai vũ trụ thế nào như vậy ta cần biết và
. Hiện nay ta biết hằng số Hubble khá chính xác:
Ở đây Mpc (megaparsec) là đơn vị độ dài dùng trong thiên văn, bằng m, từ đó ta có thể tìm thấy mật độ tới hạn:
Còn để tìm ta phải khoanh ra một thể tích trong vũ trụ và tìm cách “cân” vật chất bên trong thể tích này. Trong một thời gian dài người ta đo được
chỉ độ 0.3, trong đó 0.04 từ vật chất nhình thấy, còn lại từ vật chất không nhìn thấy (“vật chất tối”). Tuy nhiên lý thuyết inflation tiên đoán
với độ chính xác cao. Trong nhiều năm (đầu và giữa những năm 90) nhiều nhà vật lý lý thuyết vẫn giữ niềm tin sắt son là
mặc dù quan sát có vẻ cho thấy
. Cuối cùng, năm 1998 ta biết trong vũ trụ còn một dạng vật chất nữa gọi là “năng lượng tối”, với mật độ bằng khoảng
. Cộng thêm mật độ vật chất tối ta có
phù hợp với tiên đoán của lý thuyết inflation.
Những tính toán trong bài này hoàn toàn dựa vào lý thuyết hấp dẫn của Newton, tuy nhiên kết quả chính của bài này (công thức liên hệ và
) không thay đổi nếu ta dùng thuyết tương đối rộng của Einstein.