Category Archives: People

Origin of the term “ghost” used in quantum field theory

For a long time I had been wondering who was the first to use the term “ghost” into quantum field theory. My first encounter with the term was in the context of Faddeev-Popov’s approach to quantization of non-Abelian gauge theories. But Faddeev and Popov, in their first articles, did not use “ghost”; instead, they used a more innocuous term, something like “a fictitious scalar field.” From what I could find out, almost immediately after Faddeev and Popov that strange field, scalar but with fermionic statistics, was renamed “ghost.” The post-Faddeev-Popov literature, however, does not contain any indication on who came up with this term. It also seems that the Russian equivalent “духи” was imported from English, rather than the other way around.

Who was that person who has managed to introduce into the vocabulary of particle physics, the science of the 20th century, a word that has origin in the superstitious beliefs at the dawn of human history?

Several days ago I ran onto David Derbes, a retired physics teacher from the University of Chicago Laboratory High School, who has helped the publication of a number of historical documents, including Dyson’s and Coleman’s lectures in quantum field theory. He told me about his latest object of study—the first preprint of Faddeev and Popov, in Russian and never published. I asked him if he knew the origin of the term “ghost.” David said did not know, but he told me he would try to find out.

With David’s help, now I think I know who has introduced the term “ghost” and when.

It turned out that the term was introduced by Wolfgang Pauli, in a different context. Pauli, a giant in physics, was also responsible for the introduction of the particle now called “neutrino” with a famous letter which started with the words „Liebe radioaktive Damen und Herren“, “Dear radioactive Ladies and Gentlemen.” And as with the neutrino, Pauli introduced the term “ghost” in a letter. In fact, in two letters. The first letter, sent to Källén on December 9, 1954, contains Pauli’s announcement of his intention to send a letter to TD Lee, where he would propose the word “ghost.” (The letter to Källén is letter [1942] in the book edited by Karl von Meyenn, see the end of this posting). Pauli predicted that once the term is proposed, its use will spread epidemically in the literature. But Pauli wrote that he did not think “ghosts” are physical, citing a quote, allegedly by Lichtenberg, “There are more things in the compendiums of physics, than are dreamt of in heaven and Earth.”

The letter to TD Lee was sent five days later on December 14, 1954, written in English, and copied to Dyson. Here are the beginning and the end of that letter. Note the way Pauli signed the letter. (Text taken from the Karl von Mayenn’s book; this is letter [1946] in that volume.)

“Dear Lee!

It is already some time that I started to study your paper seriously. Days became weeks, weeks two months and my file „Lee-model“ is still increasing – a proof of its importance. It is true that in my way of looking at it, most of this importance is concentrated in your footnote 4, p. 1331 and the rest of the paper seems to me, at least in first approximation, negligible in comparison to this small printed note.

(… a lot of technical discussions follow …)

The essential occurrence of negative probabilities in your example makes it, of course, extremely unphysical. But this is not my whole story, and in some other respects, I may have good consolation for you, too. Until now I only told you results which are proved. In the following concluding part of this letter I shall formulate guesses or conjectures of a more general kind, which should be merely considered as the outline of a program of further mathematical investigations.

Let us call a new energy-state with negative probability (negative in comparison with the other states of normal behaviour for small coupling constant), whose energy tends to ±∞ for (renormalized) coupling constant g going to 0, a ‚ghost‘. It is my opinion that the occurrence of ‚ghosts‘ will soon turn out to be a general feature of coupling constant renormalization. This feature has been revealed first by your example, the importance of which should therefore not be underrated. If the unrenormalized theory diverges logarithmically, the energy of the ghosts will behave for small g as \exp(\textrm{const}/g^2). This seems to offer an explanation for the fact that in the examples, which could be really investigated until now, Dyson’s power series have the convergence radius zero. I suggest that this result (Thirring and others), which is presumably general, be brought in connection with the fact that the ghost energy is of the mentioned essentially singular type at the point g = 0. If my conjecture is right, the renormalized field-theory should have a mathematically rigorous solution, which, however, is unphysical because of the occurrence of negative probabilities in it. The ghosts have no physical reality whatsoever, they are the formal reaction of mathematics to the tricks played on her by the method of renormalization.

If my conjecture is right, this should also hold for quantum electrodynamics, the only case where we are certain that renormalization has anything to do with nature. The ghosts would then be situated very roughly, at the extreme high energy of e137 times electron mass (factors like l/π in the exponent not excluded). These ghost-states will then be only very seldom excited and one can understand the possibility that quantum-electrodynamics including renormalization, can give good approximations. But, in principle, it would have this defect too.

The situation is too new for us to think about the therapy now, we have first to think about good mathematical methods, to check the diagnosis and make the bacillus in the renormalization method generally visible. There are great difficulties in this problem. If, for instance, a ‚ghost‘ would be discovered in a Tamm-Dancoff approximation, how could we be sure that it is not only a result of the insufficiency of this approximation?

Nevertheless I think that this mathematical problem can be attacked and I suggested to Källén, who is at present in Copenhagen, that he resumes his old work of 1952 in the light of this new aspect. Our results will certainly be published in due time in one form or another but I think they have first to be put on a broader basis.

Meanwhile I hope that the end of this long letter will be the beginning of something else and I conclude with all good wishes for Xmas and for a really new year in physics to yourself and to all friends at Columbia University.

Sincerely yours,

The society of ghost hunters
The president

TD Lee’s paper mentioned by Pauli is Phys. Rev. 95, 1329 (1954). Pauli would continue to refer to particles with negative norm as “ghosts.” For example, in a letter sent to to Heisenberg on May 18, 1955, Pauli expressed doubt that modes with negative norm in Heisenberg’s model can be quarantined from the rest of the Hilbert space. He asked: „Wieso bleibt der Geist in der Flasche?“ “Why does the ghost stay in the bottle?” (it appears that in German the word Geist, meaning ghost, is also used for a genie in a bottle).

Pauli’s ghost is, in the modern language, related to the Landau pole. With the invention of asymptotic freedom, Landau pole is no longer inevitable in quantum field theory. Pauli’s prediction that the term “ghost” would be widely used remains correct. “Ghost” lives on, most notably as the colorful name for Faddeev and Popov’s “fictitious scalar field.”


W. Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band IV, Teil II: 1953-1954 (Scientific Correspondence with Bohr, Einstein, Heisenberg, a.o. Volume IV, Part II: 1953-1954), edited by Karl von Meyenn, Springer, 1999.

Addendum (July 6, 2019): Although the English word “ghost” was first proposed by Pauli in his December 9, 1954 letter to Källén, Pauli conceived the use of the German word “Geist” for the same purpose a few days earlier, in his December 6, 1954 letter to Fierz.


Igor Tamm and the Taylor expansion

From the memoirs of L.I. Vernsky, grandson of Igor Tamm, published in Воспоминания о И.Е.Тамме (3е изд., ИЗДАТ, Москва, 1995), pp. 108-109, translation by Google and me. (An alternative, more dramatic but in my view less reliable version of the story was told by G. Gamow in his book My World Line, Viking Press, 1970.)

In the summer of 1920 Igor Tamm decided to leave Crimea, then occupied by Wrangels’s troops, for Elisavetgrad, which was already liberated by units of the the Red 14th and 1st Cavalry Armies. He deliberately left his documents behind, as they were not suitable for leaving the territory occupied by the Whites, nor for crossing to the Reds. He crossed the front line without any problem; in any case, there wasn’t a solid front line. He and an accidental companion decided to spend a night in an empty building on an abandoned homestead. The two were soon detained by a Red Army detachment. Neither of them had any documents with them. To the people who arrested them, it appeared obvious that they were White scouts, deserved to be shot.

Luckily for Tamm, the commander of the detachment was a drop-out student. He grinned grimly while listening to Tamm’s explanation that he had graduated from the Physics and Mathematics Department of the Moscow University.

“So, you’re a mathematician? You’re lying, aren’t you? No problem, we will give you a test now. Here! Derive for me the formula for the expansion of a function in Taylor series. Including the remainder term! If you can do it, you will be freed. If not – you and your friend will face the firing squad.”

Tamm was given a pencil, a piece of paper and a candle. The soldiers brought an armful of fresh hay and locked Tamm and his companion in.

[Igor Tamm said] “My companion calmed down and quickly started to snore… And I was not up to sleep: outside the door was a sentry, and the deadline was the next morning.”

Tamm was nervous: not only his own life was on the table, but also the life of his innocent comrade.

“I was worried, and thus I did not manage to solve the problem. I did get the general idea but I made a mistake somewhere and got myself confused. The morning came and I still couldn’t find the damned mistake!”

In the morning, though no derivation was presented, the commander became convinced that the man knew mathematics. Tamm asked the commander to help him find his mistake.

“You know,” said the commander, “I can’t expand functions anymore… I’ve forgotten everything. I left my university more than two years ago. I was just being strict with you yesterday.”

Maryam Mirzakhani và bài toán 4 màu tự chọn

Maryam Mirzakhani, cho tới nay, là người phụ nữ duy nhất được huy chương Fields (năm 2014). Chị sinh ra ở Iran, hai lần đoạt huy chương vàng thi toán quốc tế. Mirzakhani học đại học ở Iran, sau đó sang Mỹ, từ năm 2008 là giáo sư đại học Stanford. Chị mới qua đời mấy hôm trước, lúc mới 40 tuổi. “A light was turned off today. It breaks my heart ….. gone far too soon.” – một người bạn của chị viết trên Instagram.

Tôi chắc chắn là mình không thể hiểu được những công trình đã đem lại cho Mirzakhani huy chương Field, nhưng tôi có tìm đọc bài báo đầu tiên của chị. Bài báo có lẽ viết năm 1995 hoặc 1996, được đăng năm 1996. Bài báo liên quan đến định lý bốn màu quen thuộc. Định lý này nói rằng ta có thể dùng bốn màu (ví dụ xanh, đỏ, tím, vàng) để tô bất cứ một bản đồ nào sao cho hai nước có đường biên giới chung bao giờ cũng được tô bằng hai màu khác nhau. Định lý này được Francis Guthrie, một nhà toán học đồng thời cũng là nhà thực vật học, phát biểu năm 1852 và đã được chứng minh vào năm 1976/1977 (với sự giúp đỡ của máy tính).

Bài toán Mirzakhani xem xét cũng liên quan đến việc tô màu bản đồ. Trong bài toán 4 màu kinh điển thì 4 màu có thể coi là do một cơ quan quốc tế chọn trước, tất cả các nước phải tô theo 1 trong 4 màu đó. Ví dụ nếu cơ quan quốc tế quyết định dùng 4 màu xanh-đỏ-tím-vàng thì nước nào trên bản đồ cũng được tô bằng một trong 4 màu đó, không thể bằng màu nào khác, như màu nâu chẳng hạn.

Bây giờ ta tưởng tượng các nước không thống nhất được 4 màu dùng cho bản đồ là những màu gì. Để giải quyết sự tranh chấp, người ta cho mỗi nước được chọn 4 màu của mình. Ví dụ nước A có thể chọn xanh-đỏ-tím-vàng, nước B chọn xanh-đỏ-tím-nâu, nước C đỏ-tím-vàng-nâu v.v. Nhiệm vụ của người làm bản đồ phải tìm cách tô bản đồ sao cho

1. nước nào cũng được tô bằng 1 trong 4 màu mình chọn, và
2. không có 2 nước láng giềng nào bị tô 2 màu giống nhau.

Liệu điều này có thể làm được với tất cả các bản đồ hay không? Tức là cho một bản đồ bất kỳ, cho mỗi nước chọn 4 màu bất kỳ, có phải bao giờ cũng tồn tại một bản đổ thoả mãn hai tính chất nói trên không?

Có thể nghĩ rằng nếu các nước khác nhau chọn những bộ 4 màu khác nhau thì phải dễ tô màu bản đồ hơn là lúc tất cả các nước phải dùng 4 màu giống nhau. Giả sử ta bắt đầu tô bản đồ từ nước A, sau đó chuyển sang nước B láng giềng. Nếu bản đồ chỉ dùng bốn màu xanh-đỏ-tím-vàng, nếu ta tô nước A màu vàng, thì nước B láng giềng chỉ có thể tô bằng một trong ba màu xanh-đỏ-tím. Nhưng trong trường hợp các màu là cho các nước tự chọn, nếu bộ 4 màu của nước B là xanh-đỏ-tím-nâu thì sau khi tô nước A màu vàng ta vẫn còn đủ 4 cách tô màu nước B, thay vì 3.

Tuy nhiên, người ta đã chứng minh được là phải cho mỗi nước được chọn 5 màu thì mới chắc chắn làm được bản đồ mà không ai bị tô màu mình không muốn. Năm 1993 người ta đã tìm ra một tường hợp với 238 nước mà, với một sự chọn lựa màu của từng nước, không tồn tại bản đồ mà nước nào cũng được tô 1 trong 4 màu của mình và khác màu tất cả các nước láng giềng.

Mirzakhani tìm được một bản đồ chỉ có 63 nước và một cách chọn bộ 4 màu của từng nước mà không tồn tại cách tô màu bản đồ với những tính chất viết ở trên. Ngoài việc giảm số lượng nước từ 238 xuống 63, ví dụ của chị còn có một tính chất rất hay là về nguyên tắc, nếu các nước chấp nhận tô màu gì cũng được, thì chỉ cần 3 màu là tô được toàn bộ bản đồ. Trước đây đã có giả thuyết là nếu bản đồ có thể tô được bằng 3 màu thì cho mỗi nước tự chọn 4 màu là đủ để làm bản đồ. Ví dụ của Mirzakhani chứng tỏ giả thuyết này là sai.

Bài báo ngắn và tương đối dễ hiểu, có thể đọc ở đây. Ngoài ra có thể xem thêm bài Tuổi trẻ của một người phụ nữ đạt huy chương Fields đăng ở tạp chí Epsilon số 13, trang 299.

Dưới đây là bản đồ Mirzakhani tìm ra. Bản đồ vẽ dưới dạng graph, mối điểm là một nước, hai điểm nối với nhau bởi một đường là hai nước có chung biên giới. Điểm bên phải nối với tất cả các điểm nằm ở biên của hình bên trái. Các số ở các đỉnh tương ứng với 4 màu nước đó chọn. Muốn hiểu làm thế nào Mirzakhani tìm ra được bản đồ này thì phải đọc bài báo của chị. Không biết 63 đã phải là số nhỏ nhất chưa? Tôi đoán là chưa.

Igor Tamm và người Ataman

“Câu chuyện này là do một người bạn, lúc đó (đầu những năm 1920) là giáo sư ở Odessa, kể lại cho tôi. Người bạn đó tên là Igor Tamm (giải Nobel vật lý năm 1958). Một lần ông đến một làng ngoại ô gần Odessa; thành phố Odessa lúc đó do Hồng quân kiểm soát. Ông đang mặc cả với một người nông dân xem đổi sáu cái thìa bạc được mấy con gà thì làng bị một nhóm quân của Makhno chiếm. Thời gian đó quân Makhno đang hoành hành ở nông thôn, quấy rối Hồng quân. Nhìn thấy áo quần của Tamm (hay là cái gì còn lại của áo quần), lính của Makhno dẫn ông đến người chỉ huy. Người chỉ huy là một Ataman (từ trong tiếng Nga dùng để chỉ thủ lĩnh Cozak) râu rậm, đầu đội mũ lông, băng đạn súng máy đeo vòng qua trước ngực, hai quả lựu đạn lủng lẳng ở thắt lưng.

– Thằng chó đẻ, thằng cộng sản quấy rối, mày phá hoại đất mẹ Ukraina! Mày sẽ phải trả giá bằng tính mạng!

– Không – Tamm trả lời – Tôi là giáo sư ở Đại học Odessa, tôi đến đây chỉ để kiếm cái ăn!

– Bậy bạ! – Ataman trả lời – Mày là giáo sư gì?

– Tôi dậy toán.

– Toán? – Được. Mày cho tao đánh giá sai số khi ta dừng khai triển chuỗi Maclaurin ở số hạng thứ n. Mày làm được thì tao sẽ thả. Không được thì mày sẽ chết!

Tamm không tin và tai của mình, vì vấn đề này thuộc về một lĩnh vực tương đối hẹp của toán cao cấp. Dưới họng súng, với bàn tay run rẩy, ông viết lời giải và đưa cho Ataman.

– Được! – Ataman nói. Mày đúng là giáo sư. Cho mày về!

Người này là ai? Không ai biết. Nếu người Ataman này sau này không bị chết trận, có khi hắn ta đang dạy toán cao cấp ở một trường đại học của Ukraina.”

Trích G. Gamow, My World Line (Viking Press, 1970)

Thừa giấy vẽ voi

Có một bài viết hay của Freeman Dyson, “A meeting with Enrico Fermi. How one intuitive physicist rescued a team from fruitless research“, kể lại một sự kiện rất quan trọng trong cuộc đời của ông. Dyson kể lại rằng sau khi giải quyết xong vấn đề tương tác điện từ, ông bắt đầu nghiên cứu tương tác mạnh (lực hạt nhân). Năm 1953, ông cùng một số học trò rất say sưa với một lý thuyết tương tác mạnh, mô tả tương tác giữa proton, neutron và hạt pion gọi là “pseudoscalar meson theory”. Những tính toán của nhóm ông cho ra kết quả gần với kết quả thí nghiệm của Fermi. Ông ta rất tự hào với kết quả của mình và hẹn gặp Fermi để trình bày kết quả. Ông lên xe bus đi từ Ithaca, NY đến Chicago. Câu chuyện tiếp theo như sau (bản dịch của Nguyễn Đình Đăng):

Khi tới văn phòng của Fermi, tôi trao các đồ thị cho Fermi, nhưng ông hầu như không thèm nhìn chúng. Ông mời tôi ngồi, thân thiện hỏi thăm sức khỏe vợ tôi và con trai mới sinh của chúng tôi, hiện nay 50 tuổi. Rồi, với giọng nhẹ nhàng và đều, ông ra phán quyết, “Có hai cách tính toán trong vật lý lý thuyết,” ông nói. “Một cách, là cách tôi thích hơn, đó là có một bức tranh vật lý rõ ràng về quá trình anh tính toán. Cách kia là có một hình thức luận toán học chính xác và nhất quán. Anh chẳng có bất kỳ cách nào cả.” Tôi hơi choáng, nhưng đánh bạo hỏi ông vì sao ông không coi lý thuyết meson giả vô hướng (pseudoscalar meson theory) là một hình thức luận toán học nhất quán. Ông trả lời, “Điện động lực học lượng tử là một lý thuyết tốt vì các lực yếu, và khi hình thức luận còn mơ hồ, chúng ta có một bức tranh vật lý rõ ràng dẫn dắt chúng ta. Với lý thuyết meson giả vô hướng thì không có bức tranh vật lý nào cả, còn các lực thì quá mạnh đến nỗi chẳng có gì hội tụ được. Để đạt được kết quả tính toán, anh đã phải đưa vào một quy trình cắt bớt tùy tiện chẳng dựa trên cơ sở vật lý hay toán học chắc chắn nào cả.”

Tuyệt vọng, tôi hỏi liệu Fermi có ấn tượng với việc các con số tính toán của chúng tôi phù hợp với các con số mà ông đã đo được hay không. Ông trả lời, “Anh đã dùng bao nhiêu tham số tự do trong các tính toán của anh?” Tôi nghĩ một thoáng về quy trình cắt bớt của chúng tôi rồi nói, “Bốn.” Ông nói, “Tôi nhớ ông bạn Johnny von Neumann của tôi từng nói, với bốn tham số tôi có thể mô tả được con voi, còn với năm tham số tôi có thể làm nó ngọ nguậy cái vòi.”

Fermi cuối cùng đã đúng. Phải 20 năm sau đó người ta mới tìm được lý thuyết đúng đắn của tương tác mạnh, “sắc động học lượng tử”, mô tả tương tác giữa các quark. Các hạn như proton, neutron, pion đều làm từ quark. Trong lý thuyết meson giả vô hướng, các hạt này được coi là các hạt cơ bản, nên không thể là lý thuyết đúng. Tính toán của Dyson và học trò hầu như không còn được ai nhớ đến nữa. Không biết gì về quark, chỉ dùng trực giác vật lý, Fermi biết ngay là không thể tin được lý thuyết meson giả vô hướng. Dyson viết rằng nếu không có Fermi, ông ta và học trò chắc chắn sẽ mất nhiều năm vào một hướng nghiên cứu vô ích.

Đọc câu chuyện này tôi cũng nhận ra chính mình: bản thân tôi đã làm nhiều tính toán không có bức tranh vật lý rõ ràng, không có hình thức luận chặt chẽ, và thậm chí cũng không có cả thực nghiệm để so sánh!

Trở lại với vấn đề con voi. Tôi loay hoay mãi không vẽ được con voi mà chỉ dùng 4 tham số, như von Neumann nói. Tìm đọc trên internet tôi thấy đã có người viết là đã vẽ được voi dùng 4 tham số, nhưng tìm hiểu kỹ hơn thì hoá ra họ ăn gian: 4 tham số của họ là số phức, thực chất là 8 tham số thực. Chi tiết có thể đọc ở đây. Tuy nhiên chỉ cần dùng 2 tham số thực có thể vẽ được bức tranh “con trăn nuốt con voi” trong truyện Hoàng tử bé của Saint-Exupery. Bức tranh như sau:

và đây là đồ thị hàm số

y= \exp(-x^2) + a \exp(-(x-b)^2)

với a = 0.8 và b = 1.75.